2024年12月19日,智源研究院发布了国内外100余个开源和商业闭源模型的评测结果,涵盖语言、视觉语言、文生图、文生视频、语音语言等领域的综合及专项评测。与5月的评估相比,智源评测在任务解决能力上进行了扩展和细化,新增了数据处理、高级编程和工具调用等能力与任务。首次增加了针对金融量化交易场景的应用能力评估,以及基于模型辩论的对比评估方式,深入分析模型的逻辑推理、观点理解和语言表达等核心能力。
智源评测显示,2024年下半年大模型发展更注重综合能力提升与实际应用。多模态模型发展迅速,出现了新的厂商与模型,而语言模型发展相对放缓。在模型开源生态中,除了持续开源的海内外机构,还出现了新的开源贡献者。综合榜单覆盖了文本、语音、图片、视频理解与生成等多个领域。
在语言模型方面,针对中文场景的开放式问答或生成任务,模型能力已趋于稳定,但在复杂场景任务中,国内头部语言模型与国际一流水平仍有差距。主观评测中,字节跳动Doubao-pro-32k-preview、百度ERNIE 4.0 Turbo位列前两位,OpenAI o1-preview-2024-09-12、Anthropic Claude-3-5-sonnet-20241022位列第三、第四,阿里巴巴Qwen-Max-0919排名第五。客观评测中,OpenAI o1-mini-2024-09-12、Google Gemini-1.5-pro-latest位列前两位,阿里巴巴Qwen-max-0919、字节跳动Doubao-pro-32k-preview位居第三、第四,Meta Llama-3.3-70B-Instruct排名前五。
视觉语言多模态模型方面,开源模型架构趋同,但表现不一。较好的开源模型在图文理解任务上正在缩小与头部闭源模型的能力差距,而长尾视觉知识与文字识别以及复杂图文数据分析能力仍有提升空间。评测结果显示,OpenAI GPT-4o-2024-11-20与字节跳动Doubao-Pro-Vision-32k-241028领先于Anthropic Claude-3-5-sonnet-20241022,阿里巴巴Qwen2-VL-72B-Instruct和Google Gemini-1.5-Pro紧随其后。
文生图多模态模型方面,今年上半年参评的模型普遍无法生成正确的中文文字,但此次参评的头部模型已经具备中文文字生成能力。整体普遍存在复杂场景人物变形的情况,针对常识或知识性推理任务,小于3的数量关系任务表现有所提升,大于3的数量关系依然无法处理,涉及中国文化和古诗词理解的场景对模型而言是挑战。评测结果显示,腾讯Hunyuan Image位列第一,字节跳动Doubao image v2.1、Ideogram 2.0分居第二、第三,OpenAI DALL·E 3、快手可图次之。
文生视频多模态模型方面,画质进一步提升,动态性更强,镜头语言更丰富,专场更流畅,但普遍存在大幅度动作变形,无法理解物理规律,物体消失、闪现、穿模的情况。评测结果显示,快手可灵1.5(高品质)、字节跳动即梦P2.0 pro、爱诗科技PixVerse V3、MiniMax海螺AI、Pika 1.5位列前五。
语音语言模型方面,得益于文本大模型的进步,能力提升巨大,覆盖面更全,但在具体任务上与专家模型还存在一定差距,整体而言,性能好、通用能力强的开源语音语言模型偏少。专项评测结果显示,阿里巴巴Qwen2-Audio位居第一,香港中文大学&微软WavLLM、清华大学&字节跳动Salmon位列第二、第三,Nvidia Audio-Flamingo,MIT & IBM LTU均进入前五。
智源研究院再次联合海淀区教师进修学校新编了K12全学段、多学科试卷,进一步考察大模型与人类学生的能力差异。得益于多模态能力的带动发展,模型本次K12学科测验综合得分相较于半年前提升了12.86%,但仍与海淀学生平均水平存在差距;在英语和历史文科试题的表现上,已有模型超越了人类考生的平均分;模型普遍存在「文强理弱」的偏科情况。
FlagEval大模型角斗场是智源研究院今年9月推出的面向用户开放的模型对战评测服务,以反映用户对模型的偏好。目前,FlagEval覆盖国内外约50款大模型,支持语言问答、多模态图文理解、文生图、文生视频四大任务的自定义在线或离线盲测。此次评测,共有29个语言模型、16个图文问答多模态模型、7个文生图模型、14个文生视频模型参评。评测发现,用户对模型的响应时间有更高要求,对模型输出的内容倾向于更结构化、标准化的格式。
作为模型对战评测服务FlagEval大模型角斗场的延展,今年10月智源研究院推出了模型辩论平台FlagEval Debate,对模型的逻辑推理、观点理解以及语言表达等核心能力进行深入评估,以甄别语言模型的能力差异。本次评测发现,大模型普遍缺乏辩论框架意识,不具备对辩题以整体逻辑进行综合阐述;大模型在辩论中依然存在「幻觉问题」,论据经不起推敲;大模型更擅长反驳,各个模型表现突出的辩论维度趋同,在不同的辩题中,模型表现差距显著。FlagEval Debate评测结果表明,Anthropic Claude-3-5-sonnet-20241022、零一万物Yi-Lighting、OpenAI o1-preview-2024-09-12为前三名。
此次评测,智源研究院探索了基于实际应用场景的全新方法,通过评测模型的量化代码实现能力,探索模型在金融量化交易领域的潜在应用能力和商业价值。评测发现,大模型已经具备生成有回撤收益的策略代码的能力,能开发量化交易典型场景里的代码;在知识问答方面,模型整体差异较小,整体分数偏高,但在实际代码生成任务上,模型差异较大,整体能力偏弱;头部模型能力已接近初级量化交易员的水平。金融量化交易评测结果显示,深度求索Deepseek-chat,OpenAI GPT-4o-2024-08-06,Google Gemini-1.5-pro-latest位列前三。
智源评测体系FlagEval再迭代,覆盖全球800+开闭源模型。本次评测依托智源研究院自2023年6月上线的大模型评测平台FlagEval,经过数次迭代,目前已覆盖全球800多个开闭源模型,包含20多种任务,90多个评测数据集,超200万条评测题目。在评测方法与工具上,智源研究院联合全国10余家高校和机构合作共建,探索基于AI的辅助评测模型FlagJudge和灵活全面的多模态评测框架FlagEvalMM,并构建面向大模型新能力的有挑战的评测集,包括与北京大学共建的HalluDial幻觉评测集、与北师大共建的CMMU多模态评测集、多语言跨模态评测集MG18、复杂代码评测集TACO以及长视频理解评测MLVU等,其中与北京大学共建的HalluDial是全球规模最大的对话场景下的幻觉评测集,有18000多个轮次对话,和14万多个回答。为规避数据集泄露风险以及数据集饱和度问题,本次评测吸纳了近期发布的数据集并持续动态更新评测数据,替换了98%的题目,并提升了题目的难度。